Tromping Games: Tiling with Trominoes
نویسندگان
چکیده
The game of Domineering is a combinatorial game that has been solved for several boards, including the standard 8 × 8 board. We create new partizan – and some impartial – combinatorial games by using trominos instead of and along with dominoes. We analyze these Tromping games for some small boards providing a dictionary of values. Further, we prove properties that permit expressing some connected boards as sums of smaller subboards. We also show who can win in Tromping for some boards of the form m× n, for m = 2, 3, 4, 5 and infinitely many n.
منابع مشابه
Hard and Easy Instances of L-Tromino Tilings
In this work we study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we indentify restrictions to the problem where either it remains NP-complete or it has a polynomial time algorithm. First we show that an aztec diamond of order n always has an L-tromino tiling...
متن کاملTiling Rectangles with Gaps by Ribbon Right Trominoes
We show that the least number of cells (the gap number) one needs to take out from a rectangle with integer sides of length at least 2 in order to be tiled by ribbon right trominoes is less than or equal to 4. If the sides of the rectangle are of length at least 5, then the gap number is less than or equal to 3. We also show that for the family of rectangles that have nontrivial minimal number ...
متن کاملParity and tiling by trominoes
The problem of counting tilings by dominoes and other dimers and finding arithmetic significance in these numbers has received considerable attention. In contrast, little attention has been paid to the number of tilings by more complex shapes. In this paper, we consider tilings by trominoes and the parity of the number of tilings. We mostly consider reptilings and tilings of related shapes by t...
متن کاملTromino tilings of domino-deficient rectangles
In this paper I have settled the open problem, posed by J. Marshall Ash and S. Golomb in [4], of tiling an m × n rectangle with L-shaped trominoes, with the condition that 3 |(mn 2) and a domino is removed from the given rectangle. It turns out that for any given m, n ≥ 7, the only pairs of squares which prevent a tiling are {(1,2), (2,2)}, {(2,1), (2,2)}, {(2,3), (2,4)}, {(3,2), (4,2)} and the...
متن کاملTotal Tetris : Tetris with Monominoes , Dominoes , Trominoes , Pentominoes , . .
We consider variations on the classic video game Tetris where pieces are k-ominoes instead of the usual tetrominoes (k = 4), as popularized by the video games ntris and Pentris. We prove that it is NP-complete to survive or clear a given initial board with a given sequence of pieces for each k ≥ 5, complementing the previous NP-completeness result for k = 4. More surprisingly, we show that boar...
متن کامل